ОБАВЕШТЕЊЕ
НАСТАВНИЦИМА И САРАДНИЦИМА ЕЛЕКТРОНСКОГ ФАКУЛТЕТА

Докторска дисертација кандидата мастер инж. Александра Марковића под насловом „Развој метода и алгоритама за процену перформансе комуникационих система применом апроксимација специјалних функција“ и Извештај Комисије за оцену и одбору докторске дисертације доступни су на увид јавности у електронској верзији на званичној интернет страници Факултета и налазе се у штампаном облику у Библиотеци Електронског факултета у Нишу и могу се погледати до 30.05.2018. године.

Примедбе на наведени Извештај достављају се декану Факултета у напред наведеном року.

Obavestenje obrađivala:
Маја Крстић Маринковић,
Стручни сарадник за опште и правне послове
<table>
<thead>
<tr>
<th>Подаци о кандидату</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Презиме, име јединог родитеља и име</td>
<td>Марковић Вељко Александар</td>
</tr>
<tr>
<td>Датум и место рођења</td>
<td>03.08.1987. Нови Пазар</td>
</tr>
</tbody>
</table>

Основне студије

<table>
<thead>
<tr>
<th>Универзитет</th>
<th>Универзитет у Приштини</th>
</tr>
</thead>
<tbody>
<tr>
<td>Факултет</td>
<td>Факултет техничких наука</td>
</tr>
<tr>
<td>Студијски програм</td>
<td>Електроника и Телекомуникације</td>
</tr>
<tr>
<td>Звање</td>
<td>Инжењер електротехнике и рачунарства</td>
</tr>
<tr>
<td>Година уписа</td>
<td>2006.</td>
</tr>
<tr>
<td>Година завршетка</td>
<td>2009.</td>
</tr>
<tr>
<td>Просечна оцина</td>
<td>9,25 (девет и 25/100)</td>
</tr>
</tbody>
</table>

Мастр студије, магистарске студије

<table>
<thead>
<tr>
<th>Универзитет</th>
<th>Универзитет у Приштини</th>
</tr>
</thead>
<tbody>
<tr>
<td>Факултет</td>
<td>Факултет техничких наука</td>
</tr>
<tr>
<td>Студијски програм</td>
<td>Електроника и Телекомуникације</td>
</tr>
<tr>
<td>Звање</td>
<td>Мастер инжењер електротехнике и рачунарства</td>
</tr>
<tr>
<td>Година уписа</td>
<td>2009.</td>
</tr>
<tr>
<td>Година завршетка</td>
<td>2011.</td>
</tr>
<tr>
<td>Просечна оцина</td>
<td>9,89 (девет и 89/100)</td>
</tr>
<tr>
<td>Научна област</td>
<td>Електротехничко и рачунарско инжењерство</td>
</tr>
<tr>
<td>Наслов завршног рада</td>
<td>Нумеричка анализа оптичког солитонског преноса</td>
</tr>
</tbody>
</table>

Докторске студије

<table>
<thead>
<tr>
<th>Универзитет</th>
<th>Универзитет у Нишу</th>
</tr>
</thead>
<tbody>
<tr>
<td>Факултет</td>
<td>Електронски факултет</td>
</tr>
<tr>
<td>Студијски програм</td>
<td>Електротехника и рачунарство</td>
</tr>
<tr>
<td>Година уписа</td>
<td>2011.</td>
</tr>
<tr>
<td>Остварен број ЕСПБ бодова</td>
<td>522</td>
</tr>
<tr>
<td>Просечна оцина</td>
<td>10,00 (десет и 00/100)</td>
</tr>
</tbody>
</table>

Наслов теме докторске дисертације

<table>
<thead>
<tr>
<th>Наслов теме докторске дисертације</th>
<th>Развој метода и алгоритама за процену перформанси комуникационих система применом априкосимација специјалних функција</th>
</tr>
</thead>
<tbody>
<tr>
<td>Име и презиме ментора, звање</td>
<td>др Зоран Перић, редовни професор</td>
</tr>
<tr>
<td>Број и датум добијања согласности за тему докторске дисертације</td>
<td>НСВ број 8/20-01-004/17-021 У Нишу, 15.05.2017. године</td>
</tr>
</tbody>
</table>

Преглед докторске дисертације

<table>
<thead>
<tr>
<th>Број страна</th>
<th>116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Број поглавља</td>
<td>6</td>
</tr>
<tr>
<td>Број слика (шема, графициона)</td>
<td>35</td>
</tr>
<tr>
<td>Број таблица</td>
<td>32</td>
</tr>
<tr>
<td>Број прилога</td>
<td>0</td>
</tr>
</tbody>
</table>
Приказ научних и стручних радова кандидата
који садрже резултате истраживања у оквиру докторске дисертације

Р.бр. Аутор-и, наслов, часопис, година, број поуљума, странице Категорија

У овом раду, базираном на Mils ratio априкспимацији Q-функције, представљен је нови побољшани копозитни метод априкспимације Q-функције. На основу ове побољшане априкспимације, представљен је израз за процену средње вероватноће грешке (ASEP) за M23 дигитални формат модулације у Накагами-м фединог каналу. Прво, извршено је упоређивање са дугим познатим априкспимацијама Q-функције у затвореном облику и показано је да је у посматраном опсегу вредности постигнуто побољшање тачности. Показано је да се коришћењем предложе априкспимације вредности средње вероватноће грешке (ASEP) за неке примењене формате модулације могу ефикасно и претцизно проценити при преносу у Накагами-м федином каналу.

У овом раду представљена је једноставна и веома тачна интервална априкспимација erf(x) функције (Q-функције) за процену средње вероватноће грешке по симболу (ASEP) у каналу са федином. Извршено је поређење са другим познатим априкспимацијама Q-функције и показано да је побољшана тачности постигнуто коришћењем предложе интервалне априкспимације. Показано је да се коришћењем предложе априкспимације вредности средње вероватноће грешке (ASEP) за неке примењене формате могу ефикасно и претцизно проценити када се посматра пренос у континуум са федином. Такође је показано да су коришћењем предложе априкспимације добијене тачније вредности за средњу вероватноћу грешке по биту него коришћењем других познатих априкспимација Q-функције.

Jelena Nikolić, Zoran Perić and Aleksandar Marković, Proposal of simple and accurate two-parametric approximation for the Q-function, Mathematical Problems in Engineering, Volume 2017, Article ID 8140487, 10 pages, accepted, DOI: https://doi.org/10.1155/2017/8140487
Предложена је нова априкспимација Q-функције која не решава само један одређени проблем. Уместо тога, овај проблем анализиран је на један начин и дато је једно опште решење које има широку примену. Постављена су два циља: један је једнородност аналитичког облика априкспимације Q-функције, други је релативно висока тачност априкспимације за широк спектар аргумента. Будући да је предложена двопараметарска априкспимација Q-функције, непитивањем утицаја избора параметара на тачност априкспимације одређени су најпогоднији параметри априкспимације и истовремено остварени постављени циљеви. Предложена априкспимација, која је упоредива или чак и боља од претходно предложених априкспимација, сличне аналитичке сложености, указује на њену широку примену.

У овом раду разматран је макродиверзитет систем са макродиверзитет пријемником за селекционо комбиновање (SC-selection combining) и микродиверзитет SC пријемником који раде у окружењу композитног multipath фединог. Примљени сингал који је истовремено под утицајем спорог гама фединга и брзог α-κ-μ фединга резултату је у деградацији перформансе система. Макродиверзитет SC пријемник смањује утицај спорог гама фединга а микродиверзитет SC пријемник смањује утицај брзог α-κ-μ фединга. Изведен је аналитички израз за средњи број осних пресека предложеног бежичног
мобилног система. Приказана математичка и нумеричка анализа показује утицај параметара спорог гама фединга и брзог α-к-μ фединга и Рајсовог фактора на средњи број осних пресека.

У овом раду су израчunate априсокације израза за средњу вероватноћу грешке по биту, стандардна мера перформансе бежичних система са федином користећи линеарну spline функцију за L=2, L=4 и L=8 сегмента. Како би резултати имали што општију МЗ3 примену систем је моделован са α-к-μ распределом која укључује специјалне случајеве других модела фединга, тако да добијена анализа има висок ниво генералности. Добијени су резултати који показују да ова априсокација има висок степен тачности у широком опсегу. Разматран је и аспект апсолутних и релативних вредности грешке у широком опсегу улазних вредности параметара.

НАПОМЕНА: уколико је кандидат објавио више од 3 рада, додати нове редове у овај део документа

ИСПУЊЕНОСТ УСЛОВА ЗА ОДБРАНУ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Кандидат испуњава услове за оцену и одбрану докторске дисертације који су предвиђени Законом о високом образовању, Статутом Универзитета и Статутом Електросног факултета у Нишу.

На основу услова предвиђених Законом о високом образовању, Статутом Универзитета, Правилником о поступку припреме и условима за одбрану докторске дисертације и Статутом Електросног факултета у Нишу, Комисија констатује да кандидат Александар Марковић испуњава све предвиђене услове за одбрану докторске дисертације.

ВРЕДНОВАЊЕ ПОЈЕДИНИХ ДЕЛОВА ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Кратак опис појединих делова дисертације (до 500 речи)

У овој докторској дисертацији дате су основне карактеристике бежичног преноса сигнала са посебним освртом на сметње које се јављају при преносу као и математички модели за њихово описивање. Приказане су математичке методе за процену и одређивање неких критеријума перформансе неопходних за дизајнирање бежичних комуникационих система.

Показано је да се врло добро естимација, понашања мера перформансе за бежични комуникациони систем за α-к-μ модел фединга, може остварити на основу коришћене линеарне spline апроксимације за L = 2, L = 4 и L = 8 сегмента. Такође, добијена су побољшана коришћењем композитне дено-пено spline апроксимације, добијења комбинацијом линеарне и квадратне spline функције. Показано је да предложена метода spline апроксимације пружају висок ниво прецизности у широком спектру улазних вредности, као и да добијени резултати за средњу вероватноћу грешке по биту (АВЕР), указују на могућност коришћења предложених модела spline апроксимације у различитим процесима пројектовања бежичних комуникационих система са различитим нежељеним ефектима и сметњама.

У дисертацији су предложени алгоритми за реализацију нових интервалних и композитних метода апроксимације Q-функције, које се одликују релативно ниском аналитичком комплексношћу и пружају релативно високу тачност у поређењу са предходно предложеним апроксимацијама Q-функције са сличним аналитичким облицима комплексности.

Аналзирала је нова интервала побољшана апроксимација Q-функције, добијена коришћењем добрих особина појединих апроксимација за мале вредности аргумента и за велике вредности аргумента, што је показано упоређивањем са другим доступним апроксимацијама. Побољшана тачности је постигнуто у готово читавом опсегу аргумента вредности функције. Поређење вредности за ASEP у присуству Nakagami-m модела фединга за различите вредности параметра m, добијене коришћењем представљеног побољшаног интервалног метода у поређењу са вредностима добијеним помоћу других познатих апроксимација Q-функције су представљене за случајеве примењених BPSK и DE-QPSK модулационих формата. Опредељене применен предложен алгоритам заснован на методу интервалне апроксимације је доказвана приказивањем вредности за ASEP, које су веће тачности од вредности добијених помоћу других познатих апроксимација Q-функције у читавом опсегу посматраних вредности параметара система.

Разматран је и алгоритам за конструкцију композитне апроксимације Q-функције, заснован на Mills ratio апроксимацији, на основу којег је постигнуто побољшавање тачности апроксимације, самим тим и вредности за ASEP када се примењује предложен метод и када се ASEP рачуна на стандардни начин за случајеве преноса BPSK и DE-QPSK модулационих формата и канала условом утицају Nakagami-m фединга.

Аналзирани је нови приступ генералног типа, заснован на аналитичком интервалном методу апроксимације Q-функције који је адаптиван, у коме са за сваки дати аргумент може добити доња и
горња граница за апроксимацију. Додатно побољшање тачности добијено је формирањем интервалног метода апроксимације Q-функције увоењем још једног интервала за највише узане аргументе. Поређењем са другим познатим аналитичким апроксимацијама су представљена нова интервална побољшана мето да апроксимације Q-функције за два и три интервала, као и вредности за ASEF за примењене BPSK и DE-OPSK модулационе формате.

Разматрана је композитна апроксимација Q-функције добијена коришћењем генетског алгоритма у циљу проналажења оптималних коefцијената за предложену композитну апроксимацију. Добијени резултати су превери поређењем са другим постојећим резултатима у литератури. Нумеричким израчунавањем показало се да уведене експоненцијална апроксимација другог реда превазилази најбоље предходно представљене апроксимације, нарочито у региону са ниским аргументима, док друга предложенапроксимација даје одличне резултате за високе вредности аргумента.

ВРЕДНОВАЊЕ РЕЗУЛТАТА ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Ниво остваривања постављених циљева из пријаве докторске дисертације (до 200 речи)

Многе доступне емпиријске и аналитичке методе апроксимација Q-функције пружају различите компромисе између тачности апроксимација Q-функције, као и то да су неке од метода погодне за мале аргументе али не за велике и обрнуто. Упркос томе што имају одговарајућу аналитичку трактабилност не пружају задовољавајућу тачност. Такође, често имају врло комплексну аналитичку форму која није погодна за математичке манипулације које укључују Q-функцију.

Због наведених недостатака апроксимација Q-функције овај проблем је и даље широко распространjen. Ово је инспирисало израживање које је представљено у овој докторској дисертацији, при чему је испуњен циљ да предложе нове апроксимације Q-функције имају високу тачност као и једноставну аналитичку форму која омогућава извођење многих анализа које укључују Q-функцију на једноставан начин.

Остварени циљеви кроз добијене резултате представљене у докторској дисертацији омогућују пројектовање нових модела и апаратум за имплементацију апроксимација специјалних функција за процену перформанси система за случајеве примене различитих типова модулација, врста детекција, модела канала, као и прорачун и анализу перформанси комуникационих система. Добијени резултати омогућују израду модела и реализацију софтвера за симулацију и анализу алгоритама апроксимације специјалних функција и примени у конструкцији квантизера.

Вредновање значаја и научног доприноса резултата дисертације (до 200 речи)

На основу разматраних математичких метода побољшани су постојећи и пројектовани нови модели и алгоритми за имплементацију апроксимација специјалних функција реализованих за процену најзначајнијих критеријума перформанси који дефинису меру квалитета сигнала на пријему и који су неопходни за дизајнирање бежичних комуникационих система, са већим степеном тачности и малом комплексности у односу на постојећа решења, за случајеве примене различитих типова модулација, врста детекција као и модела канала. Дата је нова интервална апроксимација Q-функције, добијена коришћењем добрих особина појединих апроксимација за мале вредности аргумента и за велике вредности аргумента. Поређење вредности за ASEF у присуству Nakagami-м модели фединга за различите вредности параметра m, добијене коришћењем представлена побољшаног интервалног метода у поређењу са вредностима добијеним помоћу других познатих аппроксимација Q-функције су представљене за случајеве примењених BPSK и DE-OPSK модулационих формате. Разматран је и алгоритам за конструкцију композитне апроксимације Q-функције на основу којег је постигнуто побољшање тачности апроксимације, самим тим и вредности за ASEF када се примењује предложен метод и када се ASEF рачуна на стандардни начин. Предложен метод као и анализирани резултати, доприносе примени и даљим истраживањима у области обраде сигнала и преноса информација.

Оцена самосталности научног рада кандидата (до 100 речи)

Сматрајмо да је кандидат Александар Марковић доставио научно релевантну дисертацију под насловом "Развој метода и алгоритама за процену перформанси комуникационих система применом апроксимације специјалних функција". Такође смо мишљења да су главни појмови истраживања добро дефинисани, да су применени методи јасно објашњени, као и да теза садржи све неопходне елементе референтног научног истраживања и да је концизно написана. Сматрајмо да је кандидат урадио докторску дисертацију на предложену тему у складу са задатим истраживачким циљевима. Кандидат је показао самосталност у раду објављивања два рада категорије M23 као првопотписани аутор као и један рад категорије M24. Такође постоји неколико научних резултата који нису објављени а у припреми су за слање у часописима са импакт фактором.
На основу увида у докторску дисертацију и извршене анализе, може се закључити да докторска дисертација Александра Марковића представља истраживачки рад високог квалитета, који садржи оргиналне доприносе у области обраде сигнала и преноса информација. На темељу наведеног! можемо закључити да су испуњени сви критеријуми према којима је докторска дисертација подобна за јавну одбрану. Стога предлагамо Наставно-научном већу Електронског факултета, Универзитета у Нишу да се кандидату Александру Марковићу одобри јавна усмена одбрана докторске дисертације под насловом: "Развој метода и алгоритама за процену перформанси комуникационих система применом апроксимација специјалних функција".

<table>
<thead>
<tr>
<th>Комисија</th>
<th>Број одлуке ННВ о именовању Комисије</th>
<th>Датум и место Комисије</th>
</tr>
</thead>
<tbody>
<tr>
<td>Број одлуке ННВ о именовању Комисије</td>
<td>ИСВ број 8/20-01-004/18-015</td>
<td>У Нишу, 16.04.2018. године</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Р. бр.</th>
<th>Име и презиме, звање</th>
<th>Председник (ментор)</th>
<th>Потпис</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>др Зоран Перић, редовни професор</td>
<td>Електронски факултет, Ниш</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Научна област)</td>
<td>(Установа у којој је запосле)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>др Дејан Милић, редовни професор</td>
<td>члан</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Научна област)</td>
<td>(Установа у којој је запосле)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>др Александра Јовановић, ванредни професор</td>
<td>члан</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Научна област)</td>
<td>(Установа у којој је запосле)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>др Јелена Николић, доцент</td>
<td>члан</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Научна област)</td>
<td>(Установа у којој је запосле)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>др Стефан Панић, ванредни професор</td>
<td>Природно-математички факултет, Универзитет у Приштини са привременим седиштем у Косовској Митровици</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Научна област)</td>
<td>(Установа у којој је запосле)</td>
<td></td>
</tr>
</tbody>
</table>

Електронски факултет у Нишу

<table>
<thead>
<tr>
<th>Примљено</th>
<th>Број</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.04.2018</td>
<td>805-014/18-003</td>
</tr>
</tbody>
</table>