НАСТАВНО-НАУЧНО ВЕЋЕ
Дана: 14. септембар 2018. године

ОБАВЕШТЕЊЕ
О
СТАВЉАЊУ НА УВИД НАУЧНОЈ ЈАВНОСТИ
ИЗВЕШТАЈА КОМИСИЈЕ О КАНДИДАТУ ЗА ИЗБОР У НАУЧНО ЗВАЊЕ

Извештај се може погледати и на сајту Факултета (Информације/ Обавештења/
Избори у звања 2017/2018.)
Примедбе на наведени извештај достављају се Наставно-научном већу Електронског факултета у Нишу у напред наведеном року.

Председник Наставно-научног већа
ЕЛЕКТРОНСКОГ ФАКУЛТЕТА У НИШУ

Декан
Проф. др Драган Јанковић

Обрадила:
Мажа Крстић Маринковић, стручни сарадник за опште и правне послове
Predmet: Izveštaj Komisije za izbor u naučno zvanje **naucni saradnik** kandidata dr Uglješa Jovanovića

Odlukom Izbornog veća Elektronskog fakulteta u Nišu broj 03/01-059/18-006 od 06.09.2018. godine imenovana je Komisija za pisanje izveštaja za izbor u naučno zvanje naučni saradnik kandidata dr Uglješa Jovanovića (u daljem tekstu Komisija) u sastavu:

1. dr Dragan Mančić, redovni profesor Univerziteta u Nišu, Elektronskog fakulteta u Nišu za užu naučnu oblast Elektronika,
2. dr Branislav Petrović, redovni profesor Univerziteta u Nišu, Elektronskog fakulteta u Nišu za užu naučnu oblast Elektronika,
3. dr Goran Stančić, docent Univerziteta u Nišu, Elektronskog fakulteta u Nišu za užu naučnu oblast Elektronika,
4. dr Aca Micić, redovni profesor Univerziteta u Nišu, Mašinskog fakulteta u Nišu za užu naučnu oblast Mehatronika.

Na osnovu uvida u priloženu dokumentaciju, Komisija podnosi sledeći

IZVEŠTAJ

1. **PODACI O KANDIDATU**

1.1. **Lični podaci**

1.2. **Podaci o dosadašnjem obrazovanju**

1.3. **Profesionalna karijera**

god. zaposlen je Elektronskom fakultetu u Nišu u zvanju u zvanju stručni saradnik za naučnoistraživački rad.

2. PREGLED I MIŠLJENJE O DOSADAŠNJEM NAUČNOM I STRUČNOM RADU KANDIDATA

Dr Uglješa Jovanović se u okviru naučnoistraživačkog rada bavi razvojem merno upravljačkih sistema za fotonaonske elektrane, razvojem novih tehnika za mirenje intenziteta električne struje i magnetnog polja, razvojem mernih sistema za primenu u ekologiji i modelovanjem snažnih ultrazvučnih pretvarača. Za izbor u naučno zvanje naučni saradnik kandidat je prijavio ukupno 50 rezultata koji podležu M kategorizaciji, od čega 31 predstavljaju naučne radove, 18 su tehnička rešenja i odbranjena doktorska disertacija.

Od 31 naučnog rada, 6 radova štampano je u naučnim časopisima međunarodnog značaja kategorije M20 (1xM21, 1xM22, 3xM23 i 1xM24, tj. 25 poena), 6 radova štampano je u naučnim časopisima nacionalnog značaja kategorije M50 (6xM51, tj. 12 poena), 12 radova štampano je u zbornicima međunarodnih naučnih skupova kategorije M30 (12xM33, tj. 12 poena) i 7 radova štampano je u zbornicima domaćih naučnih skupova kategorije M60 (5xM63 i 2xM64, tj. 2.9 poena).

2.1. Radovi objavljeni u naučnim časopisima međunarodnog značaja, kategorija M20 (25 poena)

2.2. Radovi objavljeni u naučnim časopisima nacionalnog značaja M50 (12 poena)

UDK 621.7:535.651
DOI: 10.5767/anurs.cmat.110202.en.164P

UDC: 665.655:624.072.21

UDC: 551.509.1:535.1

UDC: 665.655:624.072.21

UDC: 666.655:531.8:004.42MATLAB
DOI: 10.2298/SJEE1801041J

UDC: 681.586.7:621.317.31:005.9
DOI: 10.2298/SJEE1802225J

2.3. Zbornici međunarodnih naučnih skupova, kategorija M30 (12 poena)

2.4. Predavanje po pozivu na skupovima nacionalnog značaja, kategorija M60 (2.9 poena)

D5. Željko Đurđević, Uglaša Jovanović, Igor Jovanović: „Mikrokontrolerski upravljeni programabilni prekidačko napajanje”, IEEESTEC 8th Student Project Conference, 2015, Niš, pp. 201-204. (M63)

2.5. Odbranjena doktorska disertacija, kategorija M70 (6 poena)

2.6. Tehnička rešenja, kategorija (M80) (37 poena)

2.7. Podaci o objavljenim radovima

U radovima A1, A5 i A6 predstavljena je realizacija i optimizacija šinskih pretvarača za merenje intenziteta električne struje, baziranih na Holovom senzoru. U radu A1 razmatrana su dva tipa šina, i to ravnopravna raiona šina i ravnopravna šina sa suženjem na sredini. Oba realizovana pretvarača mogu meriti AC i DC struje u opsegu do 30 A i frekvencije do 10 kHz, sa nelinearnošću manjom od 0.3% u celom strujnom opsegu. U radu A2 razmatrana je šina savijena u obliku čirilčnog slova “IT” u cilju smanjenja uticaja skin efekta. Realizovani pretvarač može meriti AC i DC struje u opsegu do 250 A i frekvencije do 10 kHz, sa nelinearnošću manjom od ±0.5% u celom strujnom opsegu. U radu A6 dat je pregled otvorenih strujnih pretvarača bez jezgra. Realizovani pretvarači mogu meriti AC i DC struje u opsegu od nekoliko desetina mikriampera, pa do nekoliko stotina ampera. U svu tri rada predstavljene su metode za rešavanje problema sa skin efektom i spoljašnjim magnetnim poljima, kao i dobijeni eksperimentalni rezultati.

U radovima A3 i C7 predstavljeno je merenje temperature fotonaponskih modula pomoću beskontaktnog IR senzora i kontaktnih temperaturnih senzora, a referentna merenja
dobijena su pomoću termovizijske kamere. Akviziciju merenja, njihovu obradu i memoriranje obavlja virtualni instrument realizovan u LabVIEW-u. Rešenje zasnovano na beskontaktnom IR senzoru uspešno kompenzuje nedostatke kontaktnih metoda merenja i u isto vreme pruža tačnija merenja, uz bolju fleksibilnost.

U radu A4 predstavljeno je poboljšano rešenje kola za linearizaciju signala optičkog enkodera zasnovano na generiranju pseudo-linearnog signala i njegovoj daljoj linearizaciji u dvostepenom deo-po-deo linearnom AD konvertoru. Specifičnost ovog rešenja se ogleda u primeni četvorobitnog mixed-signal kola koje generiše analogni pseudo-linearni signal i određuje prva četiri bita finalnog digitalnog koda, dok dvostepeni deo-po-deo linearni AD konvertor istovremeno vrši linearizaciju i digitalizaciju pseudo-linearnog signala.

U radovima B1 i C1 predstavljene su realizacije jednostavnih bežičnih sistema za merenje intenziteta UV zračenja baziranih na fotodiodi kao senzoru. Predstavljena je hardverska konstrukcija sistema, njihova kalibracija, kao i rezultati dobijeni u laboratoriji pre i posle kalibracije. Dodatno, sistem predstavljen u radu C1 vrši merenje intenziteta i UV indeksa.

U radovima B2 i D6 predstavljen je ekonomični sistem za praćenje intenziteta vlažnosti zemljišta, koji može meri vlažnost zemljišta do 200 kPa. Sistem je modularan i sastoji se od bazne stanice povezane na PC pomoću USB-a i autonomnog senzorskog čvora baziranog na senzoru vlažnosti zemljišta Watermark 200SS. Maksimalna udaljenost između modula na otvorenom prostoru je 10 km.

U radovima B3, C5 i D7 predstavljen je rešenje bežičnog sistema za merenje prirodnog pozadinskog zračenja korišćenjem komercijalnog prenosnog instrumenta GAMMA-SCOUT. S obzirom na to da ovaj instrument nema podršku za bežičnu komunikaciju, bilo je neophodno izvršiti njegovu nadogradnju implementacijom odgovarajućeg hardverskog bloka. U radu C5 vršeno je porenječenje merenja prirodnog pozadinskog gama zračenja primenom instrumenata MFM 203 i GAMMA-SCOUT, u cilju validacije merenja instrumenta GAMMA-SCOUT.

U radovima B4 i C8 razmatra se opšti slučaj naprezanja pravougaone prizmatične piezokeramičke konzole sa poprečnom polarizacijom, opterećene na slobodnom kraju koncentrisanom silom. Dve međusobno suprotne površi pravougaone konzole su sa elektronskim prevlakama na koje se dovodi električni napon. Primjenom obrazne metode rešavanja problema elektrostatičke teorije određuju se električni potencijal, specifične deformacije, električna polja i piezoelektrični pomjeraji za pravougaonu piezokeramičku konzolu napravljenu od PZT4 piezokeramičkog materijala.

U radovima B5 i C10 predstavljen je novi Matlab/Simulink model prednapregnutog asimetričnog ultrazvučnog sendvič pretvarača. Sendvič pretvarač je modelovan upotrebom 3D Matlab/Simulink modela piezokeramičkih prstenova i metaličkih završetaka. Njihovim kaskadnim povezivanjem dobija se kompletan model ultrazvučnog Lanževinovog pretvarača. Ovim modelom moguće je odrediti bilo koju prenosnu funkciju pretvarača, pri čemu se u obzir uzima uticaj spoljašnjeg medijuma, kao i uticaj deblijinskih i radijalnih modova svakog dela pretvarača. Upoređivanjem teorijskih i eksperimentalnih rezultata potvrđuje se validnost novog dizajna.

U radovima B6 i C11 predstavljeno je rešenje ekonomičnog teslametra za merenje intenziteta magnetnog polja do ±55 mT, zasnovanog na Holovom senzoru MLX90242. Kako bi se ostvarila što veća tačnost merenja predloženi teslametar je kalibrisan pomoću
referentnog teslametra Senis 3MH3A, nakon čega je postignuta tačnost merenja bolja od ±0.2%. Dobra temperaturna stabilnost senzora MLX90242 omogućila je dovoljnu dobru tačnost merenja magnetnog polja u širokom temperaturnom opsegu.

U radu C2 predstavljen je razvoj automatskog sistema za kalibriranje instrumenata za merenje UV zračenja. Opisana je hardverska struktura sistema, kao i korišćeni izvori UV svetla. U radu je takođe predstavljena kalibracija realizovanog bežičnog sistema za merenje intenziteta UV zračenja pomoću komercijalnog instrumenta YK-35.

U radu C3 predstavljena je primena digitalnog kompas u mernom sistemu za određivanje apsolutne pozicije jednoosnog solarnog trakera. Merni sistem se sastoji od senzorske jedinice montirane na solarnom trakera i bazne stanice povezane sa PC računarom. Komunikacija između njih se sprovodi bežičnim putem. Glavni zadatak realizovanog sistema je određivanje trenutnog ugla azimuta jednoosnog solarnog trakera.

U radu C6 predstavljen je bežični sistem za merenje koncentracije prašine u vazduhu. Sistem je realizovan jeftinim, komercijalno dostupnim komponentama i može meriti koncentraciju prašine do 0.5 mg/m³. Realizovani sistem je modularnog tipa i sastoji se od bazne stanice povezane sa PC računarom putem USB veze i autonomnog bežičnog čvora na kom se nalazi optički senzor prašine GP2Y1010AU0F. Virtualni instrument realizovan u LabVIEW-u vrši akviziciju podataka, njihovu obradu i memorisanje na hard disku računara.

U radu C9 prikazana je analiza longitudinalnih oscilacija slobodne prizmatične piezokeramičke grede sa longitudinalnom polarizacijom i elektroodnom prevlakom na prednjim stranama. Pretpostavlja se da je greda pobuđena AC električnim naponom dovedenim na prednje elektrode i da spoljašnja mehanička opterećenja nisu primenjena na gredu. Za piezokeramičku gredu napravljenu od PTZ4 materijala date su biparametrijske površi stanja i elektromehaničke vrednosti dobijene proračunom u softverskom paketu Matlab.

U radu C12 određene su komponente mehaničkih pomeraja kompozitnog ultrazvučnog pretvarača u radijalnom i debljinskom pravcu oscilovanja. Komponente mehaničkih pomeraja određene su u funkciji aksijalnih i radijalnih dimenzija sastavnih delova pretvarača primenom ekvivalentnog elektromehaničkog kola celokupnog kompozitnog ultrazvučnog pretvarača. Dobijeni rezultati mogu se primeniti za detaljniju analizu kompozitnih ultrazvučnih pretvarača, što se posebno odnosi na pretvarače kod kojih se mogu pobuđivati neakSİjali modovi oscilovanja.

U radovima D1, D2 i D3 predstavljene su dve tehnike za merenje niskih nivoa DC struja u dozimetrijskim aplikacijama u kojima se kao detektori zračenja koriste PIN fotodiode, scintilačioni detektori, jonizujuće komore i slično, i dato je njihovo međusobno poređenje. Obe tehnike su implementirane u formi mernog sistema zasnovanog na mikrokontroleru i izvedene su tako da se obezbedi visoka preciznost merenja, uz maksimalnu imunost na spoljašnje elektromagnetne smetnje.
U radu D4 predstavljena je Android aplikacija za merenje temperature i relativne vlažnosti vazduha sa namenski realizovanog sistema. Razvijena aplikacija se može instalirati na svaki Android uređaj koji poseduje Bluetooth komunikaciju, bilo da se radi o telefonu ili tablet uređaju.

U radu D5 predstavljeno je projektovanje laboratorijskog prekidačkog napajanja kontrolisanog mikrokontrolerom PIC18F4550. Prikazana ideja o programabilnom regulatoru napona može se smatrati inovativnom, jer su slični uređaji došla skuplji i komplikovaniji, dok sa ovim napajanjem mogu da se ostvore rezultati zadovoljavajuće tačnosti, a sami troškovi izrade su dosta manji od cene komercijalno dostupnih uređaja slične namene.

2.8. Citiranost

Prema podacima sa Google Scholar-a, naučni radovi u kojima je dr Uglješa Jovanović autor ili koautor citirani su ukupno 22 puta:

https://scholar.google.com/citations?user=5LMA2DUAAAAAJ&hl=en

2.9. Učenje u realizaciji naučnoistraživačkih projekata

Dr Uglješa Jovanović je učestvovao, odnosno učestvuje, u realizaciji dva naučnoistraživačka projekta, i to:
1. „Joint research on various types of radiation dosimeters (RADDOS)“, evidencioni broj 207122, finansiran od strane Evropske unije, a rukovodilac projekta je bio prof. dr Goran Ristić.
2. „Razvoj, realizacija, optimizacija i monitoring mrežnog modularnog rotirajućeg fotonaponskog sistema snage 5 kW“, evidencioni broj TR33035, finansiran od strane Ministarstva prosvete, nauke i tehnološkog razvoja Republike Srbije, a rukovodilac projekta je prof. dr Dragan Mančić.

2.10. Nastavno-pedagoška aktivnost

Tokom svog angažmana na Elektronskom fakultetu u Nišu dr Uglješa Jovanović je učestvovao, odnosno aktivno učestvuje, u realizaciji više diplomskih, završnih i master radova.

3. OCENA ISPUNJENOSTI KVANTITATIVNIH USLOVA ZA STICANJE ZVANJA

Normiranje broja koautorskih radova, patentana i tehničkih rešenja:

U istraživanjima obuhvaćenim referencama F4, F6, F7, F8 i F15 (kategorija M85 (novo tehničko rešenje (nije komercijalizovano))), učestvovalo je 6 autora, ali kako se radi o složenim eksperimentalnim istraživanjima u tehničko-tehnomskim naukama ova tehnička rešenja priznaju se sa punim brojem poena.

U istraživanjima obuhvaćenim referencama F12 i F16 (kategorija M85 (novo tehničko rešenje (nije komercijalizovano))), učestvovalo je 7 autora, ali kako se radi o složenim eksperimentalnim istraživanjima u tehničko-tehnomskim naukama ova tehnička rešenja priznaju se sa punom brojem poena.

U pogledu kvantitativnih uslova za izbor, dosadašnjim radom kandidat dr Uglješa Jovanović ostvario je ukupno 94.9 poena raspoređenih po kategorijama na sledeći način:
1 x M21 = 1 x 8 = 8 poena
1 x M22 = 1 x 5 = 5 poena
3 x M23 = 3 x 3 = 9 poena
1 x M24 = 1 x 3 = 3 poena
6 x M52 = 6 x 2 = 12 poena
12 x M33 = 12 x 1 = 12 poena
5 x M63 = 5 x 0.5 = 2.5 poena
2 x M64 = 2 x 0.2 = 0.4 poena
1 x M70 = 1 x 6 = 6 poena
1 x M84 = 1 x 3 = 3 poena
17 x M85 = 17 x 2 = 34 poena

Ukupno = 94.9 poena

Kriterijumi za izbor u naučno zvanje naučni saradnik i prikaz rezultata kandidata dr Uglješe Jovanovića

<table>
<thead>
<tr>
<th>Diferencijalni uslov – od prvog izbora u prethodno zvanje do izbora u zvanje</th>
<th>Potrebno je da kandidat ima najmanje XX poena, koji treba da pripadaju sledećim kategorijama:</th>
<th>Neophodno</th>
<th>Ostvareno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naučni saradnik</td>
<td>Ukupno: 16</td>
<td>94.9</td>
<td></td>
</tr>
<tr>
<td>Obavezni (1)</td>
<td>M10+M20+M31+M32+M33+M41+M42+M51+M80+M90+M100</td>
<td>9</td>
<td>92</td>
</tr>
<tr>
<td>Obavezni (2)</td>
<td>M21+M22+M23</td>
<td>5</td>
<td>22</td>
</tr>
</tbody>
</table>

4. ОЦЕНА ИСПУЊЕНОСТИ КВАЛИТАТИВНИХ УСЛОВА ЗА СТИЦАЊЕ ЗВАЊА

Kada su u pitanju uslovi za kvalitativnu ocenu, kandidat dr Uglješa Jovanović ispunjava sledeće uslove:

- ima daleko veći broj poena od potrebnog minimuma za sticanje naučnog zvanja naučni saradnik;
- kontinualno i aktivno učestvuje u realizaciji naučnoistraživačkih projekata, sa rezultatima koji su eksperimentalno verifikovani i praktično primenjivi;
- ima aktivnu ulogu u međunarodnoj saradnji, kroz učesčenje na FP7 projektu;
- učestvuje u recenziji radova razmatranih za publikovanje u međunarodnim časopisima, kao i na međunarodnim i domaćim konferencijama;
- ima aktivno učešće u obrazovanju i razvoju stručnog i naučnog podmlatka kroz zajedničku saradnju sa studentima osnovnih i master studija na definisanju zadataka i izradi završnih i master radova;
- poseduje visok stepen samostalnosti u naučnoistraživačkom radu;
- ima bogato iskustvo u širokom spektru aktivnosti koje se odnose na organizaciona, administrativno-tehnička i pitanja korespodencije.
Na osnovu svega navedenog Komisija smatra da kandidat ispunjava sve kvalitativne uslove za izbor u naučno zvanje naučni saradnik.

5. ZAKLJUČAK I PREDLOG

Na osnovu uvida u priloženu dokumentaciju, Komisija zaključuje da kandidat dr Uglješa Jovanović formalno i suštinski zadovoljava sve zakonom propisane uslove za sticanje naučnog zvanja naučni saradnik, koji su definisani Pravilnikom o postupku i načinu vrednovanja i kvantitativnom iskazivanju naučnoistraživačkih rezultata istraživača.

Na osnovu ostvarenih rezultata, Komisija predlaže Izbornom veću Elektronskog fakulteta u Nišu da kandidata dr Uglješu Jovanovića predloži za izbor u naučno zvanje naučni saradnik.

Članovi Komisije:

1. dr Dragan Mančić, redovni profesor
 Univerzitet u Nišu, Elektronski fakultet u Nišu

2. dr Branislav Petrović, redovni profesor
 Univerzitet u Nišu, Elektronski fakultet u Nišu

3. dr Goran Stančić, docent
 Univerzitet u Nišu, Elektronski fakultet u Nišu

4. dr Aca Micić, redovni profesor
 Univerzitet u Nišu, Mašinski fakultet u Nišu